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Abstract

Abstract

The embedded devices which form the Internet of Things (IoT) experience a rapid devel-
opment in increasing processing power and decreasing chip sizes and prices. Future homes
will be equipped with smart network interoperable devices, which will communicate over
various network protocol stacks. In the fields of home- and industrial automation, cameras
providing color and depth information prove to be very useful in many applications such as
face recognition, pose tracking or environmental 3D scanning.
The Constraint Application Protocol (CoAP) is a popular IoT protocol for low power and
lossy wireless networks. CoAP is commonly used to transmit small sized sensor data, while
image sizes may be in the order of MB. This thesis aims to provide a comprehensive Appli-
cation Programming Inteface (API) to make camera resources from the state of the arts low
cost Intel RealSense RGB-D (color and depth) cameras retrievable for a CoAP client. It
also gives an insight in basic camera concepts and the use of cameras for logistic companies.
As an example, the provided CoAP client computes the object dimensions of received point
cloud data and may show the color image and the depth image in grayscale values. The
client may monitor a resource, while it repeats the initial request. The application is tested
in several test cases, which show that CoAP can be used for simple 3D scan applications,
but packet drops become a bottleneck because with default protocol parameters (NSTART =
1), CoAP effectively becomes a “stop and wait” protocol. The median to transmit a color
image with a resolution of 1280x720 pixels over a wireless network is 14.6 s. The median to
transmit a full point cloud from a depth image with 1280x720 pixels over a wireless network
could be reduced to 16 s.
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CHAPTER 1

Introduction

There are more devices connected to the IoT than people living on earth and prognosis
predict that by 2025 it will be more than 75 billions [1]. Cameras are an essential part of
Industry 4.0 and the world of smart devices. Sensors to capture visual information equip
robots with the most important sense of humans, the sight. While industrial laser scanners
are a costly purchase, modern depth cameras may offer an acceptable alternative [2]. With
the gain of image information from color and depth images, machines are able to complete
complex tasks, e.g. estimating the load status of a truck or 3D reconstruction.
Industry 4.0 is significantly driven by the IoT [3] and thus takes advantage of network
protocols for constraint devices, such as Message Queuing Telemetry Transport (MQTT) [4],
CoAP [5] or MQTT for Sensor Networks (MQTT-SN) [6] to meet the demands of constraint
devices with limited memory and processing power. When it comes to large payloads
beyond the size of simple temperature and humidity data, further challenges appear like
the negotiation of block sizes in a network of heterogenous devices, packet loss and latency.
With the success of E-Commerce, logistic companies like DHL or UPS have to deal with a
continuous growth of packet deliveries [7]. Prices are often calculated by package weight and
size. Hence, logistic companies profit from an automatic and reliable estimation of packet
and load sizes in their workflow. Packets usually have a barcode or a QR code attached
that must be scanned to coordinate the delivery process. RGB-D sensors may serve both
purposes. The distribution of RGB-D data from a camera in a constraint network requires
an appropriate network protocol.
CoAP is a popular IoT protocol which has originally been proposed by Shelby et al. in RFC
7252 [5]. CoAP runs over User Datagram Protocol (UDP) and has been designed to make
resources in constraint networks easily accessible through the web. CoAP is closely related
to Hyper Text Transfer Protocol (HTTP) [8], as they share common request methods and
response codes. CoAP and HTTP are conform to the Representational State Transfer
(REST) [9] architecture. Resources are uniquely identifiable by their Unified Resource
Identification (URI) [10] and each request must be processed independently by the server.
Communication over CoAP can also be secured by a Datagram Transport Layer Security
(DTLS) layer. Similar to the https:// scheme, there exists the DTLS secured coaps://
scheme. Due to the unreliable message delivery of UDP, CoAP introduces the possibility
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to initiate a reliable communication as indicated by the message type. Reliable messages
are marked as confirmable and become retransmitted with an exponential backoff until a
matching acknowledgement is received or the number of maximum retransmissions would
be exceeded. Unlike CoAP, MQTT runs over Transmission Control Protocol (TCP), thus
it already guarantees that messages arrive in order and reliable. The MQTT protocol may
seem to be the better choice if large payloads must be transmitted. This thesis investigates
if CoAP could be used with RGB-D cameras. Specifically a resource API is presented that
provides a RESTful interface to the Intel RealSense D400 cameras.

1.1 Motivation

While MQTT has prevailed for many companies, the use of CoAP is motivated by con-
venience, rather than performance. The most convenient user interface probably is a web
browser, as almost everyone uses it daily with mobile or stationary devices and is able to
operate it. For employees in a logistics center or for any kind of customer, it would be easy
to retrieve sensor information over a web browser. To build a bridge between web browsers
and CoAP endpoints with camera interface, HTTP-CoAP and CoAP-HTTP proxies could
map messages between both protocols. The mapping between CoAP and HTTP is best ex-
plained in RFC8075 [11]. CoAP may be a choice to transmit camera data in a live stream
because it runs over UDP. Therefore, cameras could be used for monitoring.
The CoAP multicast feature is an easy solution to aggregate camera data if cameras are
distributed across multiple endpoints. In practice, multiple cameras are often used for 3D
reconstruction [12] or if the scan area cannot be covered by the field of view of only one
camera. Endpoints in constraint networks are more affected by failure rates. If cameras are
distributed over multiple endpoints, services could be held up at least partially or another
camera could be calibrated to substitute the failed endpoint. Processing also becomes more
balanced when one endpoint does not have to serve requests for more than one camera.
Although it is not trivial to map a HTTP request to a CoAP multicast request and wait for
multiple responses because HTTP lacks multicast support, it is mentioned in RFC8075 [11].
CoAP group communication is well defined in RFC7390 [13].
CoAP integrates a resource discovery mechanism that makes it easy for clients to discover
new cameras. The resource discovery can be used in combination with multicast to get
all resources from multiple endpoint with a single request. Clients may further limit the
response payload size while they filter by the desired type of resource. For example to filter
by group resources, a client appends rt=core.gp to the URI query in a discovery request.
A resource directory [14] is a further resource discovery improvement in a network with
many nodes and many resources. The resource directory is a central point where nodes are
supposed to register their resources and update them periodically.
Comparisons with MQTT-SN have shown that CoAP needs more time to complete a regu-
larly scheduled single hop transmission and that messages arrive less reliable in a multi hop
scenario but energy consumption is lower [15]. In the scenario presented in [16], MQTT-SN
had a 30% better average transmission time than CoAP. Another publication showed that
CoAP may outperform MQTT when the packet loss rate is greater or equal to 25%. The
message overhead generated with CoAP is smaller than that of MQTT, as long as payload
sizes do not exceed about 320 B [17].
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1.2 Thesis Structure

The remaining of this thesis is structured as follows.
The next section puts this thesis into a context of existing work. Chapter 3 first gives
an overview of the application in Section 3.1 that is contributed with this thesis. Then
Section 3.2 shows the application- and CoAP resource architecture. Section 3.3 states
how the resource semantics have been implemented and what they do exactly. After that,
Section 3.3.5 tells what image processing is done to complete the application task. This
thesis includes experiments in Section 3.4 that test the performance of the application.
Following, experiments are evaluated in Section 4.1. Finally, a conclusion will be drawn in
Section 5.1 if CoAP could be used to transmit RGB-D camera data in logistic application
fields.





CHAPTER 2

Related Work

Since the proposal of CoAP in 2014, a lot of extending work has been put into it. Some
common and important extensions are the block-wise transfer [18] to make it possible to
transmit large payloads that exceed the Maximum Transmission Unit (MTU) of CoAP,
without IP fragmentation, and the OBSERVE option [19] that extends CoAP with a push
mechanism, based on client subscriptions. Further research was done to facilitate CoAP
group communication [13] and guidelines to map between HTTP and CoAP were pro-
posed [11]. A lot of research was done to ease resource discovery. There are centralized
Proactive Resource Discovery (PRD) [20] solutions with a resource directory and there are
Fully Distributed Resource Discovery (FRD) [21] approaches. In PRD, the resource di-
rectory sends advertisements so that new nodes may become aware of it very quickly. In
FRD, resource descriptions are propagated by a flooding algorithm. CoAP has become
very popular in the IoT, hence there are a lot of implementations in different languages.
A performance analysis of several CoAP implementations has been conducted by Marker
Iglesias-Urkia et al. [22]. Their tests showed that libcoap is one of the fastest libraries.
Companies with focus on industrial automation are using RGB-D cameras to develop new
applications for their customers in the logistics sector. For example, Thorsis Technologies
in collaboration with the Fraunhofer institution in Magdeburg have developed a framework
for different RGB-D cameras [23]. It provides different applications, like simple package
scan, scan of euro pallets and load supervision in a truck.
In robotics, RGB-D cameras are frequently used to perform Simultaneous Localization and
Mapping (SLAM). The robot’s task in SLAM is to construct a 3D map of it’s environment
and capture the path on which it was moving. Endres et al. [24] presented one of the first
RGB-D SLAM systems, where the only sensor has been a Microsoft Kinect v1.
There are different approaches how cameras calculate depth values. An early technique
was structured light [25]. Structured light imposes that an irregular but known infrared
pattern is traced into the scene and an infrared camera observes the projected pattern.
Depth values are triangulated from the disparity of the known pattern and the projected
pattern. While the Microsoft Kinect v1 works with structured light, Kinect v2 measures
the Time-of-Flight [26] for a laser that is traced into the scene and reflected back to the
camera. A comparison of Kinect v1 and Kinect v2 has been done by Wasenmüller et al. [27].
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They concluded that the Kinect v2 delivers more accurate depth values, even across longer
distances but is more affected by temperature than the Kinect v1 camera. They have also
noted that multiple structured light cameras interfere each other. The cameras used for
this thesis are Intel’s RealSense D400 [28] depth cameras, which compute depth information
from stereo vision [29]. For stereo vision, two cameras must produce rectified images of
the same scene which means that a pixel in one image must correspond to a pixel in the
other image, where the corresponding pixel is only shifted in horizontal direction. Finding
corresponding pixels can be hard in textureless scenes, thus Intel’s cameras also include an
infrared projector [30] to produce an artificial texture. Carfagni et al. [31] have compared
the model D415 with Intel’s previous generation of depth cameras, with regards to short
rage depth quality. They found the D415 to be more precise. Intel has published a collection
of papers, regarding their D400 camera series. These papers include methods for camera
fine tuning [32], power over Ethernet [33], image post processing [34], the use of multiple
cameras [35], an explanation of the infrared projectors [30] and a guide to perform a camera
calibration [36].



CHAPTER 3

Thesis Contribution

This chapter presents the results that could be achieved with the work on this thesis. Firstly,
the implementation scope is given in Section 3.1. Following, the application architecture
is described and the structure of the CoAP resource API is presented in Section 3.2. As
a main part, Section 3.3 shows implementation details of the utilized CoAP library and
the camera interface and explains CoAP resource semantics. It also puts a focus on image
processing. Finally, 11 experimental test cases are introduced in Section 3.4 to show the
influence of image resolution, network and post processing on the application performance.

3.1 Application Scope

The application presented in this thesis is an example that shows that CoAP can serve
as an appropriate and lightweight communication protocol for basic scan applications as
they can be found in today’s logistic companies [37]. CoAP has been designed to work in
networks consisting of constraint IoT devices, hence large payloads are not typical and the
CoAP block-wise transfer [18] extension becomes a necessary implementation requirement
to transmit images and point cloud data considering that high resolution images of 1280
× 720 pixels in RGB format have an uncompressed size of 2.7648 MB. Similar a point
cloud obtained from a depth sensor running at a low resolution of 640 × 480 pixels has
an upper bound of 307 200 points. On the assumption that each point is represented as
3 floating point values, where each float has a size of 4 B, the size of that point cloud is
at most 3.6864 MB. With the provided application a CoAP client is able to access the
camera’s color, depth and point cloud resource for general purpose image processing. The
point cloud data can be retrieved unfiltered or the client can set dimension upper and
lower bounds and post processing options to reduce the number of points in a response in
order to limit transmission sizes. As an example, the client is able to compute the minimal
box shaped packaging for any object that can be captured with one or multiple cameras
that can be run on the same or separate endpoints. The application does not provide a
framework for any RGB-D sensor but has been developed to work with the D400 series
of the Intel RealSense sensor family. The single-sensor application builds the basis for
the multi-sensor application and thus is the simpler one. More than one sensor might be
required to create a 3D reconstruction of a scene. That can be done with multiple sensors
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which are either oriented inwards, e.g. to reconstruct a human, or oriented outwards, e.g.
to reconstruct a room. The latter cannot be done with this application because there won’t
be a common point for cameras that are oriented in opposite directions. The first kind of
reconstruction could be done with this application, as one might have one camera for the
front, back, left and right sight of an object. The 3D reconstruction shall not be the task
for the presented application. Instead, the task will be to find the object’s x-, y- and z-
dimensions which form a minimal packaging box with one and multiple sensors. Sometimes
even that could require multiple sensors if the object is too large. A prior configuration step
must be done before the points obtained from multiple cameras can be processed together.
Because each camera defines their points relative to it’s own position as the origin (0, 0, 0).
The points of each camera must be transformed into a common coordinate system [38].
For that purpose a separate tool is provided with this thesis. The 3D-Transformation
tool determines the transformation parameters, rotation matrix and translation vector, and
visualizes the transformed point cloud of one or more sensors. The user is able to perform
manual correction if needed. The tool can also be compiled for embedded hardware without
additional visualization. Another difficulty when a task is carried out by multiple sensors
is that sensors can be distributed across several devices. In the particular case of multiple
cameras there must be a way to trigger all nodes to capture a new image at the same time.
Due to the UDP transport protocol, CoAP is already capable to trigger multiple endpoints
by simply sending an IP multicast scan request. However, this may not result in fully
synchronized images since each camera may still grab their new image at slightly different
times depending on request arrival time and the delay it takes to grab an image. The
current implementation makes use of the CoAP multicast feature but does not perform any
time synchronizing mechanism. Such a mechanism could be a high resolution timestamp,
e.g. in milliseconds that is provided with every image. Besides that, all endpoints must
be configured to have a common timer. In a secure network the Network Time Protocol
(NTP) [39] could be used to synchronize the system clocks of all sensor nodes in periodic
time intervals. Considering security issues, NTP might not be an appropriate solution
because an attacker could fake it’s source IP address and would cause another client to be
swamped with NTP responses to the monlist command [40]. Even the synchronization of
multiple cameras connected to a single device can be a problem. For that purpose, Intel
integrated a sync-cable port into their D400 camera series [35]. The synchronization can
be achieved either by one camera acting as the master and the others acting as slaves or
the slaves can be triggered by an external signal.

3.2 Architecture

The application consists of a CoAP server and a client implementation. Server and client
exchange messages according to the request-response model, where the communication is
always initiated by a client that sends a request to the server which sends an appropriate
response. This approach has been chosen because this is the default CoAP message ex-
change method. In contrast to the request-response model, the publish-subscribe model
as implemented by the MQTT protocol also could have been implemented with the CoAP
OBSERVE option, that can be present in a GET request. In a scenario where data needs to be
transmitted regularly, e.g. for live streaming, this would be the preferred approach since
it omits a regular request being send and thus reduces network bandwidth consumption.
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Figure 3.1: Application resource tree

Thanks to the modularity of the OBSERVE option, this feature could be added at any time
which makes CoAP fit a wider range of application scenarios. The server’s task is to pro-
vide a camera- and application configuration interface and to provide CoAP resources to
retrieve the relevant camera data which are color and depth image data and point cloud
data. For that it utilizes the camera specific API. The client’s tasks are to configure the
cameras with application dependent parameters and to perform the image processing. For
each connected camera the server provides an individual configuration API in the form of
CoAP resources. The sensors of an Intel RealSense camera, i.e. color and depth sensor,
are working independently of each other. Thus both sensors are configured independently
as well. The server also holds persistent resources to create the configuration and data
retrieval resources. Color and depth images are retrieved from each camera separately and
point cloud data can be retrieved either by addressing a specific camera path segment or by
the general point cloud path segment. The general point cloud resource initiates a depth
image grab for all connected cameras and the server returns their computed point clouds.
For that reason all cameras of an endpoint should be provided with appropriate transfor-
mation parameters so the server can transform all points into a common coordinate system.
This is explained in Subsection 3.3.4. Figure 3.1 shows all application resources as a tree
and Table 3.1 shows their applicable request methods.

3.3 Implementation

In this section, the implementation details are going to be elucidated. On the one side the
CoAP library and CoAP resources are presented in Subsection 3.3.1 and on the other side
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URI Path GET POST PUT DELETE
/cams no no no no
/cams/pointclouds no yes no no
/cams/color no yes no no
/cams/depth no yes no no
/cams/pointcloud no yes no no
/cams/color-settings no yes no no
/cams/depth-settings no yes no no
/cams/application-config no yes no no
/cams/3d-transformation no yes no no
/cams/advanced-config no yes no no
/cams/<serial nr.>/color no yes no yes
/cams/<serial nr.>/depth no yes no yes
/cams/<serial nr.>/pointcloud no yes no yes
/cams/<serial nr.>/color-settings yes no yes yes
/cams/<serial nr.>/depth-settings yes no yes yes
/cams/<serial nr.>/application-config yes no yes yes
/cams/<serial nr.>/3d-transformation yes no yes yes
/cams/<serial nr.>/advanced-config yes no yes yes

Table 3.1: Allowed Application Resource Methods

the image processing in Subsection 3.3.5 and the camera API in Subsection 3.3.2 are in
focus.

3.3.1 The CoAP Library

The used CoAP library for this project is an own implementation in C and does not support
the entire RFC7252. The current implementation does not provide a DTLS layer to handle
secure communication over the coaps:// scheme. Furthermore the library does not support
proxying. In order to satisfy the application requirements the CoAP block-wise transfer as
of RFC7959 and CoAP group communication as proposed in RFC7390 are implemented in a
simplified manner. The server side has to create CoAP resources. The user must provide the
URI path, the content format and CoRE Link Format [41] attributes which are returned in
a resource discovery response to the dedicated resource at .well-known/core. Optionally
the user can provide a pointer to an Etag variable that the user must keep updated. The
library examines this variable to issue a 2.03 VALID response and for the if-match option.
If the resource size is known in advance the user can provide an allocated buffer and must
provide the buffer size and the size of the resource. These information become attached
to the CoAP resource handle. To handle the request methods GET, POST, PUT and DELETE
the user must provide function callbacks and a pointer to some optional user data that
shall be passed as a callback argument. When the resource has been successfully created
the user calls the register function in which ownership of the resource handle is passed to
the library. Internally registered resources are organized in a list which is sorted by the
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resource URI path. When a client sends a request that matches a registered resource the
appropriate method callback is called with a general library handle argument which is called
coap_interaction, the received CoAP message, a convenient struct that holds pointers to
all present request options and the user created resource handle along with the generic
user data. Within the method callback the user should send the response according to the
CoAP request/response semantics. If the user decides to respond to a confirmable message
in a separate response he or she must send an empty acknowledgement and any time later
he or she can send the response. For example the user could use a thread that waits
for the resource to become ready and as soon as that becomes true, the server sends the
response. The client side must first create a coap_interaction handle to send a request.
To that handle the user can attach a response callback together with some general user data
which shall be passed as a callback argument. The response callback also receives a struct
holding pointers to present options in the response, the original request CoAP message
and the response CoAP message. Within the response callback the client should copy the
response payload to an appropriate location. Most importantly, the response callback is
where the client sends the next payload block in case of a present BLOCK1 option in a
2.31 CONTINUE response or requests the next payload block to be send in case of a present
BLOCK2 option in a 2.05 CONTENT response. The coap_interaction structure is the
general library handle. In the sense of CoAP this handle represents the lifetime of a CoAP
token that belongs to a CoAP remote node. Internally the interactions are stored in a
hash table to achieve short response times. Not visible to the user, any coap_interaction
has it’s next timeout attached. The timeouts are organized in a future event list which is
internally programmed as a heap data structure. The CoAP library provides GET, POST, PUT
and DELETE resource handlers for the coap-group resources described in RFC7390 [13]. In
RFC7390 the application/coap-group+json content format is proposed. The JavaScript
Object Notation (JSON) content-format makes the CoAP library depend on a JSON library
that has been chosen to be the cJSON library [42].

3.3.2 The Camera

The Intel D400 camera series [28] is the latest generation of Intel’s RealSense depth and
color sensors that have been released in January 2018. Since November 2018, the D435i has
been released. It integrates an Inertial Measurement Unit (IMU) into the D435 camera to
make the camera capable of estimating it’s own pose which makes it well suited for robotics
and tracking applications. The cameras must be run over USB 3.0 to fully exploit their
capabilities, i.e. to enable all camera formats and resolutions. For this thesis two Intel
RealSense D415 cameras have been tested. They are the cheapest model. The Intel D415
is best suited for 3D scan applications [31] because it has a smaller field of view than the
D435 and D435i. It delivers the best depth results when running at a resolution of 1280x720
pixels [32]. Thus the same number of pixels covers a smaller area of the scene. Unlike the
D435 and the D435i, the D415 has a rolling shutter rather than a global shutter. A rolling
shutter does not work well for tracking applications where moving objects must be captured
because the image exposure is done line or column wise and not all pixels at once. Thus
distortions are the consequence.
Each D400 camera can be interfaced with the librealsense library [43] from Intel. Natively,
the library is programmed in C++ but the developers provide various wrappers, for example
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for Python, Android and C. The low level C wrapper has been used to develop the present
application. The easiest way to get started with the cameras is to use the high level pipeline
class. The user just has to fill a config object with the stream resolutions, stream types,
Frames per Seconds (FPS) and stream formats, pass it to the pipeline and the device starts
streaming. The pipeline is able to output synchronized color and depth frames according
to frame timestamps. The pipeline class has not been used for the current implementation
because continuously streaming of depth and color data would decrease the performance on
embedded systems and is not necessary to fulfill the application task. Instead, color and
depth sensor open and close for each grab. For each packet kind there exists an application
header that is uniquely identifiable by the type field to let a client process the received packet
appropriately. The headers are depicted in Figure 3.2. The fields Image Width and Image
Height are a 16 bit unsigned integer in network byte order and build the image resolution.
For a point cloud packet, the Number of Points field is the number of points as a 16 bit
unsigned integer in network byte order. The field Pixel Size and Point Size are the size of
a pixel or a point in bytes, respectively. The Timestamp field is a 32 bit UNIX timestamp
in network byte order. For a depth packet, the Depth Scale is a floating point number. The
meaning of the depth scale is explained in Subsection 3.3.3.

3.3.3 Resource API

This subsection explains the application resource semantics and implementation details.
Some resources only exist to create new resources as it is often the case for POST. Requests
to retrieve, color, depth and point cloud data must use the POST method as well because
they trigger a new grab, hence the resource changes and requests are not idempotent. Some
resources must exist for each camera. Those are automatically created and deleted when a
device becomes connected or disconnected, respectively. This has been implemented with
the rs2_set_devices_changed_callback() function from librealsense. However, in case
of an error, in some use cases it might not be the easiest way to just go to the device and
replug it. In that case one could delete and recreate the device specific resources.

Resources to create camera specific resources

The resources to create the camera specific resources are depicted on the right side of
Figure 3.1 and only support the POST method. A request to these resources must contain
the serial number of the camera whose resource shall be created. The serial number is
encoded in American Standard Code for Information Interchange (ASCII) characters and
is expected to be 12 digits in length. In case that there is no camera with the specified
serial number connected, a 4.00 BAD REQUEST response is returned. The sequence diagram
in Figure 3.3 shows the message flow of a successful resource creation of the color resource
for a certain camera. The message flow is the same for all other resource creation resources,
with respect to the URI. Thus it serves as a reference.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type Pixel Size
Image Width
Image Height
Timestamp …
…Timestamp

Header

⎧{{{{
⎨{{{{⎩

Data
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

a) Application packet format for a color image packet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type Point Size
Number of Points …
…Number of Points

Timestamp …
…Timestamp

Reserved

⎫}}}}}
⎬}}}}}⎭

Header

Data
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

b) Application packet format for a point cloud packet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Type Pixel Size
Image Width
Image Height
Depth Scale …
…Depth Scale
Timestamp …
…Timestamp

Header

⎧{{{{{{
⎨{{{{{{⎩

Data
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

c) Application packet format for a depth packet

Figure 3.2: Packet field layout of color, depth and point cloud packets
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Client ServerPOST:
/cams/color

Payload: <serial nr.>

2.01 CREATED

Figure 3.3: CoAP message flow of a successful resource creation of the color resource for a certain
camera

Resource: /cams/pointclouds

When the server receives a POST request for the general point cloud resources it triggers a
grab of a depth frame for each connected camera in a new thread. Then a point cloud is
computed for each depth frame. That is performed by the librealsense library. The server
processes the points according to previously set application and transformation parameters.
It filters the points by a 3D region of interest, applies some of the librealsense post pro-
cessing blocks and performs a 3D transformation, if transformation parameters have been
set, which should have been done before because all points are put together in a single
buffer. The server may perform an Iterative Closest Point (ICP) algorithm to register mul-
tiple point clouds. This has been implemented in the most simple way, using the Single
Value Decomposition (SVD) approach [44]. The SVD is computed with gsl [45]. However,
this introduces more computational overhead than it increases accuracy because of a brute
force nearest neighbour computation. The parameters obtained from a 3D marker trans-
formation, e.g. with ArUco [46] markers, have been found sufficiently accurate [35] for this
application. The client does not know from how many cameras the points come from. If
no camera was able to grab a new depth frame then the server only returns the header
for a point cloud packet which has set the number of points field to zero. Upon success
CoAP block-wise transfer with the BLOCK2 option is involved. The message flow to receive
all point clouds from all connected devices is shown in Figure 3.4. After that the usual
block-wise transfer follows.
This resource can also be requested in a multicast request to retrieve all point clouds from
all cameras, connected to all endpoints that have joined a certain multicast group. This
allows the cameras to be distributed across multiple network endpoints. Again, all cameras
in a group should be provided with transformation parameters to have a common origin. An
endpoint may join a multicast group, if a POST request is sent to the dedicated coap-group
resource. For example the POST request may contain the payload: {"a":"224.0.0.121"},
to make a server join the multicast group with the address 224.0.0.121.

Resource: /cams/<serial nr.>/color

This resource is used to retrieve a new color frame from the camera with the serial number
<serial nr.>. Only the POST method can be applied to this resource. Upon success CoAP
block-wise transfer with the BLOCK2 option is involved. Figure 3.5 shows the message flow
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Client Server Camera 1 Camera n
POST:

/cams/pointclouds
grab_point_cloud()

grab_point_cloud()

point cloud data

point cloud data
2.05 CONTENT

BLOCK2 (0)
Payload: Point Cloud Packet 3.2b

Figure 3.4: CoAP message flow of a successful retrieval of all point clouds from all cameras connected
to a single endpoint

to initiate the transmission of a color image.

Client Server <serial nr.>:Camera
POST:

/cams/<serial nr.>/color
grab_color()

color data
2.05 CONTENT

BLOCK2 (0)
Payload: Color Packet 3.2a

Figure 3.5: CoAP message flow of a successfully initiated transmission of a color image

Resource: /cams/<serial nr.>/depth

This resource is used to retrieve a new depth frame from the camera with the serial number
<serial nr.>. Only the POST method can be applied to this resource. Upon success CoAP
block-wise transfer with the BLOCK2 option is involved. Figure 3.5 shows the message flow
to initiate the transmission of a depth image.

Resource: /cams/<serial nr.>/pointcloud

This resource is used to retrieve a new point cloud from the camera with the serial number
<serial nr.>. Only the POST method can be applied to this resource. Upon success CoAP
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Client Server <serial nr.>:Camera
POST:

/cams/<serial nr.>/depth
grab_depth()

depth data
2.05 CONTENT

BLOCK2 (0)
Payload: Depth Packet 3.2c

Figure 3.6: CoAP message flow of a successfully initiated transmission of a depth image

block-wise transfer with the BLOCK2 option is involved. Figure 3.7 shows the message flow
to initiate the transmission of a point cloud.

Client Server <serial nr.>:Camera
POST:

/cams/<serial nr.>/pointcloud
grab_point_cloud()

point cloud data
2.05 CONTENT

BLOCK2 (0)
Payload: Point Cloud Packet 3.2b

Figure 3.7: CoAP message flow of a successfully initiated transmission of a point cloud

Resource: /cams/<serial nr.>/color-settings

This resource is used to configure the color sensor of the RealSense camera with the serial
number <serial nr.>. The PUT method is used to update the color sensor configuration and
GET is used to retrieve the current color sensor configuration. Payload is encoded in JSON,
as shown in Listing A.2. The sequence diagram in Figure 3.8 depicts the message flow of a
successful query of the current color sensor configuration of a certain camera. The sequence
diagram in Figure 3.9 shows the message flow of a successfully performed update of the color
sensor settings resource. The message flow is similar for all other configuration resource,
with respect to the URI. Supported formats are RGB8, BGR8, RGBA8 and BGRA8. FPS
can be 6, 15, 30 or 60. The resolution can be up to 1920x1080 pixels but only up to 30
FPS. In case the demanded configuration cannot be applied a 4.00 BAD REQUEST response
is returned.
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Client Server
GET:

/cams/<serial nr.>/color-settings

2.05 CONTENT
Payload: color-settings JSON A.2

Figure 3.8: CoAP message flow of a successful retrieval of the color-settings resource of a certain
camera

Client ServerPUT:
/cams/<serial nr.>/color-settings
Payload: color-settings JSON A.2

2.04 CHANGED

Figure 3.9: CoAP message flow of a successful update of the color-settings resource of a certain
camera

Resource: /cams/<serial nr.>/depth-settings

This resource is used to configure the depth sensor of the RealSense camera with the serial
number <serial nr.>. The PUT method is used to update the depth sensor configuration and
GET is used to retrieve the current depth sensor configuration. Payload is encoded in JSON,
as shown in Listing A.1. The only supported format is actually 16 bit unsigned integer
depth encoding, Z16, but further formats could be possible in the future. FPS can be 6, 15,
25, 30, 60 or 90. The resolution can be up to 1280x720 pixels but only up to 30 FPS. In case
the demanded configuration cannot be applied a 4.00 BAD REQUEST response is returned.
The z-coordinate in meters of a point is computed by 𝑧 = 𝑑𝑒𝑝𝑡ℎ_𝑠𝑐𝑎𝑙𝑒 ∗ 𝑑𝑒𝑝𝑡ℎ_𝑣𝑎𝑙𝑢𝑒 [47].
Lowering the camera’s depth scale means to increase depth accuracy, while the domain of
perceptible depth becomes smaller. For example, let the depth scale be the default value
0.001. The maximum depth value is 65 535. So the theoretically maximum z-coordinate
would be 0.001 ∗ 65535 = 65.535 which corresponds to approximately 65 m. However,
millimeter accuracy should fit just fine for most applications.

Resource: /cams/<serial nr.>/application-config

The application-config resource should be used to set a 3D region of interest to filter point
outliers and a 2D region of interest for images. It can be used to set grab timeout limits in
milliseconds, to enable a point cloud registration via an ICP algorithm and to enable some
librealsense post processing blocks [34]. Those post processing modules are a decimation fil-
ter, a spatial filter and a hole filling filter. The decimation filter performs some subsampling
according to neighboring pixels and reduces the x and y resolution resulting in less points.
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The spatial filter is used to reduce depth noise while it computes the exponential moving
average of depth values in x and y dimensions. A point is not smoothed if the difference
between it’s depth and the current moving average value exceeds a certain threshold. Then
the current point’s depth becomes the new moving average. This prevents object edges
from being smoothed. Lastly, a hole filling filter can be enabled. That is used to interpo-
late missing depth values by neighboring pixels. There is a temporal filter provided by the
RealSense library to interpolate missing depth values from past frames. Since streaming
is not done in this application, past frames are not saved and no temporal filtering can
be done. Currently filtering is only done with default parameters [47] for each processing
block. As suggested by the RealSense post processing paper [34], the applications performs
post processing in the order shown in Figure 3.10. The resource is encoded in JSON, as
shown in Listing A.3.

decimation
transformation to
disparity frame

spatial filter hole-filling filter
transformation to

depth frame
depth frame

Figure 3.10: Recommended post processing order of a depth frame from a RealSense D400 camera

Resource: /cams/<serial nr.>/3d-transformation

This resource holds the camera specific transformation parameters, which can be set with
PUT and queried with GET. They consist of a rotation matrix, a translation vector, a post
rotation vector (roll, pitch, yaw) and a post translation vector, all encoded in JSON. These
parameters transform the point cloud obtained from the related camera into a new coor-
dinate system. This transformation is mandatory for proper measurements because mea-
suring results highly depend on the accuracy of rotation matrix and translation vector.
Section 3.3.4 explains how these parameters can be obtained. Although, CoAP block-wise
transfer is not necessary here, it can be used with the BLOCK1 and BLOCK2 option because
the JSON file is about 400 B large. An example payload is shown in Listing A.4.

Resource: /cams/<serial nr.>/advanced-config

This resource can be used with PUT and GET to update and query various camera parameters.
The RealSense library provides a convenient way to fine tune their D400 cameras with a
JSON file that can be generated with a library provided program, called realsense-viewer.
In the realsense-viewer application one can adjust every camera parameter until they fit the
application purpose and export them in a JSON file. There also exist camera presets [47],
which are a set of parameters that have proven to deliver best results for specific application.
For example the preset “High Accuracy” is best suited for applications where it is better to
have no depth value than to have a low confidential depth value, which could be the case
in some robotics applications. The JSON file can be applied with the rs2_load_json()
function. If it fails to apply the JSON parameters, a 4.00 BAD REQUEST is returned in a
response. The JSON file is about 3.5 kB large, hence CoAP block-wise transfer is required.
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Client Server
GET:

/cams/<serial nr.>/advanced-config

2.05 CONTENT
BLOCK2 (0)

Payload: advanced-config JSON A.5

Figure 3.11: CoAP message flow of a successful retrieval of the advanced-config resource of a certain
camera

Client Server
PUT:

/cams/<serial nr.>/advanced-config
BLOCK1 (0)

Payload: advanced-config JSON A.5

2.31 CONTINUE
BLOCK1 (0)

Figure 3.12: CoAP message flow of a successful update of the advanced-config resource of a certain
camera

A successful retrieval of this resource is shown in Figure 3.11 and a successful resource
update is shown in Figure 3.12. An example payload is shown in Listing A.5.

3.3.4 3D-Transformation

To have each point from all cameras defined relatively to a common origin it is necessary to
perform a 3D-Transformation [38]. For each point 𝑥, the transformed point 𝑥′ is computed
with

𝑥′ = 𝑅 ∗ 𝑥 + 𝑡 (3.1)
, where 𝑥, 𝑥′, 𝑡 ∈ ℝ3, 𝑅 ∈ ℝ3×3. A separate program in C++ has been written to compute
rotation matrix 𝑅 and translation vector 𝑡. The C++ library ArUco can be used to estimate
the camera pose relative to an ArUco marker that is detected in a color image. Using a
single marker to estimate the camera’s pose can be error prone [48]. Thus the ArUco library
provides a tool to create a marker map, aruco_create_markermap. A marker has an ID,
a center and four corners in pixel coordinates. There are different kinds of markers which
are grouped in dictionaries. For this application the ARUCO_MIP_36h12 dictionary has been
used. The camera pose relative to the marker is described as a translation vector 𝑡𝑀𝐶 and
a rotation vector 𝑟𝑣𝑒𝑐𝑀𝐶 which are the results of solvePnP() from OpenCV [49]. The
rotation vector 𝑟𝑣𝑒𝑐𝑀𝐶 can be converted to a rotation matrix 𝑅𝑀𝐶 with the Rodrigues()
function from OpenCV as well. Let 𝑥𝑀 be a point in the marker coordinate system. The
point 𝑥𝑀 can be transformed to the camera coordinate system with Equation 3.2.

𝑥𝐶 = 𝑅𝑀𝐶 × 𝑥𝑀 + 𝑡𝑀𝐶 (3.2)
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To get the opposite direction from the camera coordinate system to the marker coordinate
system, Equation 3.2 must be converted to Equation 3.6.

𝑥𝐶 = 𝑅𝑀𝐶 × 𝑥𝑀 + 𝑡𝑀𝐶 (3.3)
𝑥𝐶 − 𝑡𝑀𝐶 = 𝑅𝑀𝐶 × 𝑥𝑀 (3.4)

𝑅−1
𝑀𝐶 × (𝑥𝐶 − 𝑡𝑀𝐶) = 𝑥𝑀 (3.5)

𝑥𝑀 = 𝑅−1
𝑀𝐶 × 𝑥𝐶 − 𝑅−1

𝑀𝐶 ∗ 𝑡𝑀𝐶 (3.6)

The resulting rotation matrix 𝑅𝐶𝑀 to transform a point from the camera coordinate sys-
tem to the marker coordinate system is 𝑅−1

𝑀𝐶 and the resulting translation vector 𝑡𝐶𝑀 to
transform a point from the camera coordinate system to the marker coordinate system is
−𝑅−1

𝑀𝐶 ∗ 𝑡𝑀𝐶. Before 𝑟𝑣𝑒𝑐𝑀𝐶 and 𝑡𝑣𝑒𝑐𝑀𝐶 can be computed ArUco must be provided with
the camera Intrinsic Parameters of the color sensor. That are a camera matrix 𝐶 3.3.4 and
a tupel 𝑑 of five distortion values. Both can be obtained from a camera calibration.

𝐶 = ⎛⎜
⎝

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎞⎟
⎠

The parameter 𝑓𝑥 is the Focal Length in multiples of pixel x-length, 𝑓𝑦 is the Focal Length
in multiples of pixel y-length, 𝑐𝑥 is the x pixel coordinate of the Principal Point and 𝑐𝑦
is the y pixel coordinate of the Principal Point. Intrinsic Parameters are stored on the
camera and have been estimated when the camera has been factory calibrated [36]. They
are not the same for the same camera model, thus each camera needs an individual cali-
bration. The quality of the calibration parameters varies from camera to camera. While
the camera with serial number 809512060141 does not have very accurate parameters, the
points from the camera with serial number 840412060746 transform very well with fac-
tory determined parameters. A recalibration of a camera is possible but not as accurate
as can be done with professional equipment. Even though Intel provides a paper and a
calibration framework [36], self-determined parameters from 100 images resulted in worse
results. The RealSense library provides an interface to query the intrinsic camera parame-
ters, rs2_get_video_stream_intrinsics(). The distortion coefficients returned by that
function are always zero. So it can be assumed that frames automatically become rectified
by the library. However, there must be distortion. The real distortion coefficients for the
left and right imagers can be queried with an external tool that is mentioned in the camera
calibration white paper from Intel. But distortion coefficients for the RGB sensor are not
provided by Intel. To read the camera calibration from the device the CustomRW tool
from Intel can be used with CustomRW -sn <serial nr.> -r -f <outfile.xml>.
The transformation tool takes as arguments: the configuration file for the generated marker
map, the actual marker size in meters e.g. printed on a sheet of paper, the serial number
of the camera, the file that contains the Intrinsic Parameters, width resolution, height
resolution, a number of threads that shall be used to transform all points and an output
file. The librealsense pipeline API is used to start streaming color and depth frames from a
RealSense camera and ArUco tries to detect the configured marker map in the color image.
When the marker map could be detected successfully, transformation parameters 𝑅𝐶𝑀 and
𝑡𝐶𝑀 were computed. These parameters hold for the transformation from the color sensor
to the marker map center, but each point in a point cloud from a D400 RealSense camera
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is defined relative to the left imager, so the extrinsic transformation parameters from the
left imager to the color sensor must be applied as well. The Extrinsic Parameters from the
imagers to the color sensor and vice versa have also been stored on the camera at the time of
factory calibration and can be queried with the rs2_register_extrinsics() function. Let
𝑅1 be the rotation matrix from the left imager to the color sensor and 𝑡1 the transformation
vector from the left imager to the color sensor. Let 𝑅2 be the rotation matrix from the
color sensor to the marker map and 𝑡2 the transformation vector from the color sensor to
the marker map. A point 𝑥 in the camera coordinate system is transformed to 𝑥′ in the
marker coordinate system, as shown in Equation 3.8.

𝑥′ = 𝑅2 × (𝑅1 × 𝑥 + 𝑡1) + 𝑡2 (3.7)
= 𝑅2 × 𝑅1 × 𝑥 + 𝑅2 × 𝑡1 + 𝑡2 (3.8)

If the tool was compiled with make WITH_GRAPHICS=1 then the transformed points are visu-
alized with OpenGL [50] and GLEW [51] and the user will be able to apply manual correc-
tion, with respect to rotation, translation and scaling. Manual changes in rotation are stored
as roll, pitch and yaw values in degrees, where roll is the rotation around the x-axis, pitch is
the rotation around the y-axis and yaw is the rotation around the z-axis, with respect to the
object coordinate system. The result should be that the world axis lie in the center of the
marker map, with the z-axis perpendicular. Other library dependencies are GLFW [52] to cre-
ate a window and to capture user input and glm [53] for matrix computations. For an embed-
ded device the tool should not be compiled with extra graphical support. The tool produces
an output file in JSON that lists ``rotation_matrix'' and ``translation_matrix'' as
the result of the computed transformation and ``post_rotation_matrix'' (roll, pitch
, yaw) and ``post_translation_matrix'' as the result of the manual correction. A
``scale_matrix'' and a ``post_scale_matrix'' are also contained in the file but not
needed for the application of this thesis. Figure 3.13 shows the transformation result.

3.3.5 Image Processing

In order to compute object dimensions, some image processing has to be done by the client.
The client application depends on OpenCV [49] with a version prior to 4.0.0 because since
the release of OpenCV 4.0.0 the compilation standard has been raised to C++ 11 and the
C API has been dropped.
It is assumed that all cameras are facing the ground and have been configured to use a
common coordinate system with the z-axis pointing upwards and is oriented perpendicular
to the ground. The measuring area should be free of any other object that shall not be
measured because only one object can be measured at a time. In advance a minimum z value
for all points of interest should have been configured in the application-config resource from
Subsection 3.3.3 for all cameras because points that represent the ground should not be
transmitted by the server. The only points of interest for the computation are those which
form the upper surface of the object within the measuring range. The object’s z dimension
is computed as the maximum observed z-value from the points that form the upper surface.
To compute x and y dimensions only the x and y components of a point are considered. From
these 2D points the convex hull is computed with OpenCV’s cvConvexHull2() function.
The resulting points are then used as input to OpenCV’s cvMinAreaRect2() function which



22

Figure 3.13: Aligned point clouds after 3D transformation
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computes the minimum area rectangle that encloses all points. The rectangle’s width and
height are the x and y dimensions of the object below the sensors.

3.4 Experiments

This section is dedicated to the performance analysis of the presented application that
provides color, depth and point cloud data from RealSense D400 cameras as CoAP resources.
The experiments only cover the color and point cloud resource of a single camera but not
the depth image resource because the depth image is just a prestage of the point cloud.
Experimental parameters are hardware, resolution and network overhead. Tests have been
executed on a desktop computer and on embedded hardware. Because performance strongly
depends on the CoAP library, libcoap has been used as a well known library reference. As
a test scenario, a client initiates the block-wise transfer of the requested resource 32 times,
with the maximum block size of 1024 B [18]. After each transmission of a complete image
or point cloud, the client sleeps for one second. For each test case, transmission times and
moving average transmission times for each complete resource transmission are measured.
The term “transmission time” is defined to be the elapsed time from request transmission
to the last successfully received response which completes the transmission of a resource.
Hence, “transmission time” includes processing delay which includes the time it takes to
grab an image. The average time from 32 grabs of a color image has been measured with
ca. 0.1 s, while the average time to grab a depth frame and to calculate the point cloud
has been measured with ca. 0.185 s. Server statistics, i.e. user CPU time, system CPU
time and maximum resident set size, are obtained with getrusage(). Some test cases have
been repeated with valgrind --tool=callgrind --simulate-cache=yes to capture the
number of executed instructions, instruction miss rate, data accesses and data access miss
rate. Table 3.2 lists the hardware that has been used. The application has been compiled
with clang -O3.

Name: Desktop Lenovo-Yoga L390 Odroid-Xu4
OS: Ubuntu 18.04 Arch Linux Ubuntu 18.04
Kernel: 4.15.0-48-generic 5.0.3-arch1-1-ARCH 4.14.111-158
CPU: i5-4460 - 3.20GHz i5-8265U - 1.6GHz SAMSUNG Exynos 5422
Cores: 4 8 8
RAM: 8GB DDR3 8GB DDR3 2GB LPDDR3
Network: 802.11n - 2.4GHz 802.11n - 2.4GHz Ethernet

Table 3.2: Hardware that has been used in all test cases

3.4.1 Test Case 1: (Color, 640x480, local)

In the first test case the camera has been configured to produce color frames at a resolution
of 640x480 pixels in BGR8 format. Server and client application both have been running
on the same desktop computer from Table 3.2. 640 × 480 × 3 B + 10 B header result in
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921 610 B of CoAP response payload to be transferred 32 times. This test case has also
been repeated with Callgrind.

3.4.2 Test Case 2: (Color, 1280x720, local)

The second test case shows how the color image resolution affects the measured parameters.
The camera has been configured to produce color frames at a resolution of 1280x720 pixels
in BGR8 format. Server and client application both have been running on the same desktop
computer from Table 3.2. 1280 × 720 × 3 B + 10 B header result in 2 764 810 B of CoAP
response payload to be transferred 32 times. Because the resolution in test case 2 is 2 times
higher than in test case 1, the average response time is expected to be thrice as much as in
test case 1. This test case has also been repeated with Callgrind.

Hypothesis 1 (H1): The average transmission time in test case 2 will be at most thrice
as much as in test case 1.

Hypothesis 2 (H2): The number of instructions in test case 2 will be at most thrice as
high as in test case 1.

Hypothesis 3 (H3): The maximum resident set size in test case 2 will be at most thrice
as much as in test case 1.

3.4.3 Test Case 3: (libcoap, 2764810 Byte, local)

The same amount of data as in test case 2 has been transferred in this test case but libcoap
has been used as a CoAP library reference to illuminate the influence of the CoAP library
and the CoAP block-wise transfer implementation. To make test case 3 comparable with
test case 2, server and client both have been running locally on the same machine as in test
case 2. For hypothesis, see test case 8 in Subsection 3.4.8.

3.4.4 Test Case 4: (Color, 1280x720, 1-Hop)

Test case 4 is a repetition of test case 2 but this time in a wireless network scenario. The
server has been running on the desktop computer and the client has been running on the
Lenovo Yoga L390, both listed in Table 3.2.

Hypothesis 4 (H4): The average transmission time in test case 4 will be higher than the
average transmission time in test case 2 and transmission times will have a greater variance.

Hypothesis 5 (H5): The maximum resident set size in test case 4 will be approximately
as large as the maximum resident set size in test case 2.

3.4.5 Test Case 5: (Embedded, Color, 1280x720, 1-Hop)

Test case 5 is a repetition of test case 4, where the server has been running on an Odroid-
Xu4 and the client has been running on the desktop computer. Test case 5 is not fully
comparable to test case 4 because the Odroid does not have a WiFi interface.
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Hypothesis 6 (H6): The average transmission time in test case 5 will be higher than the
average transmission time in test case 4.

Hypothesis 7 (H7): The maximum resident set size in test case 5 will be approximately
as large as the maximum resident set size in test case 4.

3.4.6 Test Case 6: (Point Cloud, 640x480, local)

In the 6th test case the camera has been configured to produce point clouds from depth
images at a resolution of 640x480 pixels in Z16 format. Server and client application both
have been running at the same desktop computer from Table 3.2. The observed number
of valid points has been approximately 286 000. 286 000 points × 12 B per point + 12 B
header result in 3 432 012 B of response CoAP payload to be transferred 32 times. This test
case has also been repeated with Callgrind.

Hypothesis 8 (H8): The average transmission time in test case 6 will be greater than the
average transmission time in test case 1.

Hypothesis 9 (H9): The maximum resident set size in test case 6 will be greater than the
maximum resident set size in test case 1.

Hypothesis 10 (H10): The number of instructions in test case 6 will be higher than the
number of instructions in test case 1.

3.4.7 Test Case 7: (Point Cloud, 1280x720, local)

Test case 7 shows how the depth image resolution affects the measured parameters. The
camera has been configured to produce point clouds from depth frames at a resolution of
1280x720 pixels in Z16 format. Server and client application both have been running on
the same desktop computer from Table 3.2. The observed number of valid points has been
approximately 836 000. 836 000 points × 12 B per point + 12 B header result in 10 032 012 B
of CoAP response payload to be transferred 32 times. This test case has also been repeated
with Callgrind.

Hypothesis 11 (H11): The average transmission time in test case 7 will be at most thrice
as much as in test case 6.

Hypothesis 12 (H12): The number of instructions in test case 7 will be at most thrice
as high as in test case 6.

Hypothesis 13 (H13): The maximum resident set size in test case 7 will be at most thrice
as much as in test case 6.

3.4.8 Test Case 8: (libcoap, 10032012 Byte, local)

In test case 8 libcoap has again been used to serve as a CoAP library reference implemen-
tation to transfer 10 032 012 B via block-wise transfer.
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Hypothesis 14 (H14): libcoap will have similar transmission times to the custom CoAP
library.

Hypothesis 15 (H15): libcoap will need less memory than the custom CoAP library.

3.4.9 Test Case 9: (Point Cloud, 1280x720, 1-Hop)

In test case 9 a point cloud from a depth frame at a resolution of 1280x720 pixels in Z16
format has been transmitted over 1 hop in a wireless network, 32 times. The server has
been the desktop PC and the client has been the Lenovo laptop from Table 3.2.

Hypothesis 16 (H16): The average transmission time in test case 9 will be higher than
the average transmission time in test case 7 and transmission times will have a greater
variance.

Hypothesis 17 (H17): The maximum resident set size in test case 9 will be approximately
as large as the maximum resident set size in test case 7.

3.4.10 Test Case 10: (Point Cloud, Decimation, 1280x720, 1-Hop)

The RealSense library provides a decimation filter to reduce the number of points in a
point cloud. This test has been accomplished to show the influence of post processing with
respect to the measured parameters.

Hypothesis 18 (H18): The average transmission time in test case 10 will be lower than
the average transmission time in test case 9.

Hypothesis 19 (H19): The maximum resident set size in test case 10 will be approxi-
mately the same as in test case 9.

3.4.11 Test Case 11: (Embedded, Point Cloud, Decimation, 1280x720, 1-Hop)

To complete all test cases, the 11th test case repeats test case 10 with the Odroid-Xu4 as
a CoAP server and the desktop computer as a CoAP client.

Hypothesis 20 (H20): The average transmission time in test case 11 will be higher than
the average transmission time in test case 10.

Hypothesis 21 (H21): The maximum resident set size in test case 11 will be approxi-
mately the same as in test case 10.



CHAPTER 4

Thesis Outcome

In this chapter, the test cases from the previous chapter are evaluated. At the end of Sec-
tion 4.1 there are evaluation charts in Subsection 4.1.12 that show each test case, compared
to each other, with respect to one measured parameter.

4.1 Evaluation

This section evaluates the described test cases from the previous section. There is a short
table that summarizes rounded values of the minimum, maximum and average transmission
time, standard deviation and the coefficient of variance for each test case. The transmission
times mark an upper bound because as described in Subsection 3.3.5, only the upper surface
is needed to compute the object dimensions. It is up to the user to configure a 3D measuring
rage with the resource shown in Subsection 3.3.3 to limit the number of points that actually
need to be transmitted. Measurements of the time spent in user space and kernel space are
inaccurate. Instead, Callgrind is a better measure of program complexity.

4.1.1 Evaluation Test Case 1: (Color, 640x480, local)

Except for the first transmission which almost took 0.6 s, all local transmissions of a 640x480
color image have been completed within 0.11 s and 0.14 s. The transmission times are ex-
pectedly small and there is almost no variance. The rolling average transmission time tends
to decrease. For the last transmission the average was about 0.138 s. The maximum resi-
dent set size after all transmissions was 138 624 kB. When the test has been repeated with
Callgrind, 10 484 381 115 instruction- and 2 619 011 862 data references have been measured,
where the I1 miss rate was 0.06%, D1 miss rate was 0.2% and LLD miss rate was 0.01%.
The program has almost spent twice as much time in system space than in user space.
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Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

114 601 127 597 480 766 137 930 475 82 792 576 0.60

Table 4.1: Statistic of transmission times for test case 1: (Color, 640x480, local)

4.1.2 Evaluation Test Case 2: (Color, 1280x720, local)

Like in test case 1, with more than 0.6 s the first transmission took longer than all others,
which lie in an interval between 0.16 s and 0.21 s. After the last transmission, the average
transmission time was about 0.2 s. It can be concluded that scaling the image resolution
does not significantly increase the local transmission time. The maximum resident set size
was 386 908 kB, which is roughly 2.8 times the maximum resident set size of test case 1.
Callgrind reported 16 701 246 075 instruction- and 4 008 742 996 data references. The I1 miss
rate was 0.1%, D1 miss rate was 0.4% and LLD miss rate was 0.3%. Thus references and
miss rates have increased. The program has spent more time in system space than in user
space but less than twice as much.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

165 467 471 643 246 091 201 034 821 79 797 913 0.4

Table 4.2: Statistic of transmission times for test case 2: (Color, 1280x720, local)

Hypothesis H1, H2 and H3 are true.

4.1.3 Evaluation Test Case 3: (libcoap, 2764810 Byte, local)

Transmitting the same amount of data with libcoap shows a significant increase of trans-
mission time. A single transmission of about 2.8 MB consistently takes 24.8 s up to 26.3 s.
In contrast libcoap consumes very little memory. The maximum resident set size has been
measured with 12 484 kB. The long latency may result from the complexity of libcoap and
developers might focus more on memory minimization than on latency. The library has
also spent roughly 240 times longer in user space than in system space.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

24 817 575 651 26 308 355 473 25 479 611 952 434 925 136 0.02

Table 4.3: Statistic of transmission times for test case 3: (libcoap, 2764810 Byte, local)
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4.1.4 Evaluation Test Case 4: (Color, 1280x720, 1-Hop)

Transmission time was measured within an interval of 10 s and 65 s with a median of 14.7 s.
The average transmission time decreased to 17 s. Thus, test case 4 shows higher transmission
times and a higher variance because this test introduces a wireless network. The maximum
resident set size was, compared to test case 2, surprisingly small with 69 000 kB, which is
still very large compared to libcoap. The server application has spent more than twice as
much time in system than in user space.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

10 470 965 550 64 788 622 316 16 921 158 259 9 460 257 807 0.56

Table 4.4: Statistic of transmission times for test case 4: (Color, 1280x720, 1-Hop)

Hypothesis H4 is true but H5 is false.

4.1.5 Evaluation Test Case 5: (Embedded, Color, 1280x720, 1-Hop)

When the server was running on the Odroid-Xu4, transmission times have been captured
within 8.7 s and 17.6 s. On average a transmission of a color frame took 10.8 s. The median
was 10.5 s. The smaller latency results from the Ethernet connection. The maximum
resident set size was 77 724 kB which is close to that of test case 4. The time spent in
system space was about 30% higher than the time spent in user space.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

8 779 341 489 17 562 543 770 10 845 170 654 1 893 791 200 0.17

Table 4.5: Statistic of transmission times for test case 5: (Embedded, Color, 1280x720, 1-Hop)

Hypothesis H6 is false and H7 is true.

4.1.6 Evaluation Test Case 6: (Point Cloud, 640x480, local)

As can be observed from test case 6 the transmission of a point cloud does take longer than
a color frame in test case 1. That follows from more computational overhead to produce a
point cloud from a depth image and a larger amount of transmission data. Transmission
latency has been observed within an interval of 0.26 s and 0.34 s where the median was
about 0.27 s. The average latency after all 32 transmissions was 0.276 s. The maximum
resident set size increased up to 470 000 kB. While the test was running, the program spent
more than 30% longer in system space than in user space. A repetition of this test case
with Callgrind showed 9 799 934 889 instruction references, where I1 miss rate was 0.21%.
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There have been measured 2 208 025 980 data references, where the D1 miss rate was 0.9%
and the LLD miss rate was 0.6%.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

264 153 682 332 764 469 276 228 236 15 023 430 0.05

Table 4.6: Statistic of transmission times for test case 6: (Point Cloud, 640x480, local)

Hypothesis H8 and H9 are true and H10 is false.

4.1.7 Evaluation Test Case 7: (Point Cloud, 1280x720, local)

Test case 7 shows that the increase of depth image resolution has a higher impact on
transmission time than it has for color images. Transmission times are within 0.42 s and
0.62 s. The median was 0.44 s and the average transmission time was 0.45 s. The maximum
resident set size grew up to 1.398 GB. The server has spent 12% more in system space than
in user space. Callgrind reported 20 266 928 023 instruction references and 4 259 744 475
data references. The I1 miss rate was 0.34%, D1 miss rate was 1.2% and LLD miss rate
was 0.8%.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

420 111 008 620 464 002 451 855 799 42 100 481 0.09

Table 4.7: Statistic of transmission times for test case 7: (Point Cloud, 1280x720, local)

Hypothesis H11, H12 and H13 are true.

4.1.8 Evaluation Test Case 8: (libcoap, 10032012 Byte, local)

On the transmission of approximately the same amount of data as in test case 7 , 10 MB,
with libcoap, it could be observed that the transmission time lied within an interval of 323 s
and 330 s. The median was 323.9 s and the average was 324.1 s. As in test case 3, libcoap
showed very little memory consumption with a maximum resident set size of 33 820 kB. The
server of libcoap spent ca. 452 times longer in user space than in system space.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

323 467 464 410 329 172 966 314 324 110 784 250 1 019 277 940 0.00

Table 4.8: Statistic of transmission times for test case 8: (libcoap, 10032012 Byte, local)
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As can be concluded from test case 3 and test case 8, hypothesis H14 is false and H15 is
true.

4.1.9 Evaluation Test Case 9: (Point Cloud, 1280x720, 1-Hop)

Over 1 hop in a wireless network, transmission times became 150 times higher than in test
case 7. The transmission times could be measured within an interval of 39.4 s and 72.7 s.
The median was 51 s and the average was 52.4 s. The time spent in system space was more
than twice as mus as the time spent in user space. Similar to test case 4, the maximum
resident set size became smaller when data was transmitted over WiFi. The maximum
resident set size was 108 888 kB.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

39 429 807 187 72 669 279 561 52 370 609 994 8 603 131 783 0.16

Table 4.9: Statistic of transmission times for test case 9: (Point Cloud, 1280x720, 1-Hop)

Hypothesis H16 is true and H17 is false.

4.1.10 Evaluation Test Case 10: (Point Cloud, Decimation, 1280x720, 1-Hop)

For a real industrial use case, the observed transmission times in test case 9 are way to high
but the number of points can be reduced with a decimation filter to decrease the amount
of transmission data. With the decimation post processing block from librealsense, the
transmission times could be limited within an interval of 10.5 s and 29.3 s. The median was
16 s and the average transmission time was 16.9 s. Compared to test case 9, the transmission
time could be reduced by ca. 68%. The server almost spent twice as long in system space
than in user space. The maximum resident set size was 69 208 kB. Hence, resident set size
has decreased, compared to test case 9.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

10 506 655 071 29 272 974 642 16 928 715 709 5 162 878 980 0.30

Table 4.10: Statistic of transmission times for test case 10: (Point Cloud, Decimation, 1280x720,
1-Hop)

Hypothesis H18 is true and H19 is false.
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4.1.11 Evaluation Test Case 11: (Embedded, Point Cloud, Decimation, 1280x720, 1-
Hop)

Test case 11 repeats test case 10 with the server running on an Odroid-Xu4. It could be
observed that the transmission times lied within an interval of 9.9 s and 14.9 s, due to the
use of Ethernet. The median was 10.9 s and the average was 11.1 s. The maximum resident
set size was 74 476 kB. The server has spent approximately 34% longer in system space
than in user space.

Min. [ns] Max. [ns] Avg. [ns] SD. [ns] Coefficient Of
Variance

9 928 847 321 14 848 909 781 11 070 906 767 946 185 343 0.09

Table 4.11: Statistic of transmission times for test case 11: (Embedded, Point Cloud, Decimation,
1280x720, 1-Hop)

Hypothesis H20 is false and H21 is true.

4.1.12 Evaluation Charts

This subsection shows the results of the experiments in several charts. Each chart compares
a subset of all test cases with regards to a single parameter.
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Chart: Transmission Times

Figure 4.1: Box plot of all transmission times for all test cases
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Figure 4.2: Box plot of all transmission times for all color related test cases

Figure 4.3: Box plot of all transmission times for all point cloud related test cases
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Figure 4.4: Box plot of moving average transmission times for all test cases

Theses box plots show that the transmission times are more heavily affected by the network
condition, rather than resolution or hardware. Transmission times are generally higher for
point clouds than they are for color images. On a local machine transmission times are
very low. For a network, post processing, region filtering and maybe a lower resolution are
recommended.
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Chart: Maximum Resident Set Size

Figure 4.5: Bar chart of maximum resident set size for all test cases

The maximum resident set size was really high, when server and client were running on the
same machine. In a network scenario, it became smaller.
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Chart: Instruction References

Figure 4.6: Bar chart of instruction references

The number of instructions scales with the resolution but the kind of resource, whether
color image or point cloud, does not make much of a difference.
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Chart: I1 Cache Miss Rates

Figure 4.7: Bar chart of I1 miss rate

The instruction cache miss rates are very low as they are always below 1%. The last level
instruction cache miss rate has always been zero, so a chart of them has been omitted. The
miss rate scales with the resolution and the kind of resource.
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Chart: Data References

Figure 4.8: Bar chart of data references

As well as the instruction references, the number of data references is most affected by the
image resolution.
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Chart: D1 Cache Miss Rates

Figure 4.9: Bar chart of D1 miss rate

The D1 cache miss rates are a little higher than the instruction cache miss rates but still
acceptable low. They scale with resolution and resource kind.
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Chart: LLd Cache Miss Rates

Figure 4.10: Bar chart of LLd miss rate

The last level data cache references are low as well and scale with image resolution and
resource kind.





CHAPTER 5

Conclusion

This chapter summarizes the advantages and disadvantages of using CoAP to transmit large
RGB-D sensor data. In the last section, an outlook of possible improvements and future
research will be given.

5.1 Summary

The goal of this thesis was to show that CoAP may function as a lightweight communication
protocol to transmit RGB-D sensor data. As a contribution of this thesis, a simple scan
application that uses the state of the art Intel RealSense D400 stereo depth sensors and
a CoAP resource API have been proposed. Compared to libcoap, the application server
performs very well in response time but leaves much potential in memory optimizations.
The first transmission of a color or a depth packet usually takes longer than following trans-
missions because the first grab with a cold sensor induces a short delay. Hence a higher
variance follows. Experiments 4.1.4 and 4.1.9 have shown that the network overhead be-
comes a bottleneck, when large data is being transferred with CoAP because of message
loss, retransmission timeouts and the nature of stop and wait. With default protocol pa-
rameters, a client waits 3 s before it assumes that the first transmission did not reach the
server. An interesting approach to speed up transmission times in CoAP would be to set
the NSTART variable from RFC7252 [5] to a value greater than 1. Using the MQTT protocol
data can be transmitted faster due to TCP’s sliding window. For example a 10 MB file
was transferred in 0.04 s with the mosquitto_pub and mosquitto_sub applications from the
mosquitto MQTT broker, where publisher and subscriber have been running on the desktop
computer, listed in Table 3.2. Compared to the results from experiment 4.1.8 where the
fastest transmission was 0.42 s, MQTT would be about 9 times faster than CoAP. But effec-
tively, all transmission times, except those measured with libcoap, from Section 4.1 include
processing delay, i.e. the time it takes to grab an image with the sensor. On constraint
devices the TCP sliding window might even be reduced to 1, which makes MQTT fall back
to simple stop and wait. Tests have shown that the transmission of a point cloud gener-
ally takes longer than the transmission of an image. However, scaling the resolution from
640x480 to 1280x720 does not triple the transmission times because there is a constant
processing overhead, including image grab time. For color frames, the higher resolution
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scales the number of instructions by ca. 1.6 and the number of data references by 1.53. For
point cloud the number of instructions is scaled by 2.07 and the number of data referenced
becomes scaled by 1.93. Cache miss rates are mostly below 1%. Test case 10, related to
test case 9, leads to the conclusion that decimation post processing improves transmission
times by ca. 68%. Test cases 5 and 11 show that the application may run on an embedded
system, such as the Odroid-Xu4 without suffering from higher response times. Generally,
transmission times in a network are very high for full resolution images and point clouds.
Thus, the conclusion of this thesis is that CoAP is only conditionally suitable to transmit
large point cloud and image data if some point subsampling can be performed and a limited
3D region of interest is known and a low resolution for color images can be use. Despite
the fact that CoAP runs over UDP, live streaming with default protocol parameters is not
a suitable application for CoAP.

5.2 Future Work

Most significantly, future work includes to make use of a resource directory. The resource
directory serves as a central point to discover measurement groups, i.e. multicast groups of
CoAP endpoint whose cameras are configured to have a common coordinate system. The
resource directory should provide the current number of group members because the client
that issues a multicast request to a measurement group must know how many endpoint it
can expect a response from. For now the client waits until the multicast response timeout
has expired, before computations are done. Secondly, a mechanism to synchronize the point
in time when multiple cameras take an image must be found. At the same endpoint one
could use sync-cables and across a network a time protocol could be used to coordinate
device timers and the recipient should drop a response if it’s timestamps drifts away too
far.
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Appendix

A.1 JSON format of resource ”/cams/<serial nr.>/depth-settings“

1 {
2 "format":"Z16",
3 "fps":30,
4 "width":1280,
5 "height":720
6 }

Listing A.1: Expected payload encoding of resource “/cams/<serial nr.>/depth-settings”

A.2 JSON format of resource ”/cams/<serial nr.>/color-settings“

1 {
2 "format":"BGR8",
3 "fps":30,
4 "width":1280,
5 "height":720
6 }

Listing A.2: Expected payload encoding of resource “/cams/<serial nr.>/color-settings”

A.3 JSON format of resource ”/cams/<serial nr.>/application-config“

1 {
2 "roi2d":
3 {
4 "pxx":0,
5 "pxy":0,
6 "width": 1280,
7 "height": 720
8 },
9 "roi3d":

10 {
11 "min_x":-0.25,
12 "max_x":0.25,
13 "min_y":-0.25,
14 "max_y":0.25,
15 "min_z":0.1,
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16 "max_z":0.3
17 },
18 "depth_grab_timeout_ms":10000,
19 "color_grab_timeout_ms":10000,
20 "icp":1,
21 "postprocessing":
22 {
23 "decimation":1,
24 "spatial":1,
25 "holefilling":0
26 }
27 }

Listing A.3: Expected payload encoding of resource “/cams/<serial nr.>/application-config”

A.4 JSON format of resource ”/cams/<serial nr.>/3d-transformation“

1 {
2 "scale_matrix" : [[1.000000],[1.000000],[1.000000]],
3 "rotation_matrix" : [[0.999524,0.030429,-0.005019],
4 [0.030511,-0.999388,0.017115],
5 [-0.004495,-0.017260,-0.999841]],
6 "translation_matrix" : [[-0.113241],[0.111672],[-0.769009]],
7 "post_scale_matrix" : [[1.000000],[1.000000],[1.000000]],
8 "post_rotation_matrix" : [[0.000000],[0.000000],[0.000000]],
9 "post_translation_matrix" : [[0.000000],[0.000000],[0.000000]]

10 }

Listing A.4: Expected payload encoding of resource “/cams/<serial nr.>/3d-transformation”

A.5 JSON format of resource ”/cams/<serial nr.>/advanced-config“

1 {
2 "aux-param -autoexposure -setpoint": "400",
3 "aux-param -colorcorrection1": "0.461914",
4 "aux-param -colorcorrection10": " -0.553711",
5 "aux-param -colorcorrection11": " -0.553711",
6 "aux-param -colorcorrection12": "0.0458984",
7 "aux-param -colorcorrection2": "0.540039",
8 "aux-param -colorcorrection3": "0.540039",
9 "aux-param -colorcorrection4": "0.208008",

10 "aux-param -colorcorrection5": " -0.332031",
11 "aux-param -colorcorrection6": " -0.212891",
12 "aux-param -colorcorrection7": " -0.212891",
13 "aux-param -colorcorrection8": "0.68457",
14 "aux-param -colorcorrection9": "0.930664",
15 "aux-param -depthclampmax": "65536",
16 "aux-param -depthclampmin": "0",
17 "aux-param -disparityshift": "0",
18 "controls -autoexposure -auto": "True",
19 "controls -autoexposure -manual": "33000",
20 "controls -color -autoexposure -auto": "False",
21 "controls -color -autoexposure -manual": "650",
22 "controls -color -backlight -compensation": "0",
23 "controls -color -brightness": "0",
24 "controls -color -contrast": "50",
25 "controls -color -gain": "64",
26 "controls -color -gamma": "300",
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27 "controls -color -hue": "0",
28 "controls -color -power -line-frequency": "3",
29 "controls -color -saturation": "64",
30 "controls -color -sharpness": "50",
31 "controls -color -white -balance -auto": "True",
32 "controls -color -white -balance -manual": "4600",
33 "controls -depth -gain": "16",
34 "controls -depth -white -balance -auto": "False",
35 "controls -laserpower": "150",
36 "controls -laserstate": "on",
37 "ignoreSAD": "0",
38 "param -autoexposure -setpoint": "400",
39 "param -censusenablereg -udiameter": "9",
40 "param -censusenablereg -vdiameter": "9",
41 "param -censususize": "9",
42 "param -censusvsize": "9",
43 "param -depthclampmax": "65536",
44 "param -depthclampmin": "0",
45 "param -depthunits": "1000",
46 "param -disableraucolor": "0",
47 "param -disablesadcolor": "0",
48 "param -disablesadnormalize": "0",
49 "param -disablesloleftcolor": "0",
50 "param -disableslorightcolor": "0",
51 "param -disparitymode": "0",
52 "param -disparityshift": "0",
53 "param -lambdaad": "800",
54 "param -lambdacensus": "26",
55 "param -leftrightthreshold": "24",
56 "param -maxscorethreshb": "2047",
57 "param -medianthreshold": "500",
58 "param -minscorethresha": "1",
59 "param -neighborthresh": "7",
60 "param -raumine": "1",
61 "param -rauminn": "1",
62 "param -rauminnssum": "3",
63 "param -raumins": "1",
64 "param -rauminw": "1",
65 "param -rauminwesum": "3",
66 "param -regioncolorthresholdb": "0.0499022",
67 "param -regioncolorthresholdg": "0.0499022",
68 "param -regioncolorthresholdr": "0.0499022",
69 "param -regionshrinku": "3",
70 "param -regionshrinkv": "1",
71 "param -robbinsmonrodecrement": "10",
72 "param -robbinsmonroincrement": "10",
73 "param -rsmdiffthreshold": "4",
74 "param -rsmrauslodiffthreshold": "1",
75 "param -rsmremovethreshold": "0.375",
76 "param -scanlineedgetaub": "72",
77 "param -scanlineedgetaug": "72",
78 "param -scanlineedgetaur": "72",
79 "param -scanlinep1": "60",
80 "param -scanlinep1onediscon": "105",
81 "param -scanlinep1twodiscon": "70",
82 "param -scanlinep2": "342",
83 "param -scanlinep2onediscon": "190",
84 "param -scanlinep2twodiscon": "130",
85 "param -secondpeakdelta": "325",
86 "param -texturecountthresh": "0",
87 "param -texturedifferencethresh": "0",
88 "param -usersm": "1",
89 "param -zunits": "1000",
90 "stream -depth -format": "Z16",
91 "stream -fps": "30",
92 "stream -height": "720",
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93 "stream -width": "1280"
94 }

Listing A.5: Expected payload encoding of resource “/cams/<serial nr.>/advanced-config”
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